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SECTION 1: SOURCE DATA 

All of the figures presented in the main text of this paper were constructed using 

International trade data taken from Feenstra, Lipsey, Deng, Ma and Mo's "World Trade Flows: 

1962-2000" dataset. This dataset consists of imports and exports both by country of origin and 

by destination, with products disaggregated to the SITC revision 4, four-digit level. The authors 

built this dataset using the United Nations COMTRADE database. The authors cleaned that 

dataset by calculating exports using the records of the importing country, when available, 

assuming that data on imports is more accurate than data from exporters. This is likely, as 

imports are more tightly controlled in order to enforce safety standards and collect customs 

fees. In addition, the authors correct the UN data for flows to and from the United States, Hong 

Kong, and China. We focus only on export data and do not disaggregate by country of 

destination. More information on this dataset can be found in NBER Working Paper #11040, 

and the dataset itself is available at www.nber.org/data. and 

http://cid.econ.ucdavis.edu/data/undata/undata.html 

We checked the validity of our results by using two additional datasets: COMTRADE 

classified according to the Harmonized System at the 4-digit level (1241 products, 103 

countries) and the North American Industry Classification System (NAICS) (318 products, 150 

countries). We found that our results are not affected by the use of data at these different 

levels of aggregation. We chose to work with the Feenstra dataset because, of the three 

datasets available, it is the one only one that has been cleaned and checked thoroughly as part 

of a dedicated research project. 

The labor data used to construct figure 2d was downloaded from the US Bureau of 

Labor and Statistics at http://www.bls.gov/data/ 
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SECTION 2: REVEALED COMPARATIVE ADVANTAGE (RCA) 

One way to empirically estimate whether a country is a significant exporter of a product is 

to calculate the Revealed Comparative Advantage (RCA) that that country has in a particular 

product. RCA is a measure constructed to inform whether a country’s share of a product’s 

world market, is larger or smaller than the product’s share of the entire world market. 

Mathematically, we can rewrite the above sentence by introducing Scp, as the share that 

country c has of the world market for product p, and Tp as the total share of product p of the 

world market. Using this notation, RCA can be written as 

 RCAcp= Scp / Tp (1)  

where 

 �� � � ���
�

 (2)  

RCA CUTOFFS, EXPORTS AND COUNTRIES’ LEVEL OF DIVERSIFICATION 

The natural cutoff used to determine whether a country has revealed comparative 

advantage in a product is RCA≥1. At this point the country’s share of that product’s market is 

equal or larger than the product’s share of the world market. The benchmark here is a world in 

which countries export an amount of each product equal to the share of that product in the 

world market times the size of its economy.  

From an empirical perspective, we can study the number of products (kc,0) for which a 

country has RCA as a function of the RCA cutoff. By performing this exercise we find that the 

RCAcp=1 cutoff lies on the phase transition of a softened step function (Figure S1). 
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Fig S 1 Diversification (kc,0) as a function of the RCA cutoff for all countries in the study 

What is interesting about looking at kc,0(RCA) from this empirical perspective is that we 

can see that there are a few countries that had exports in almost all of the 772 products 

exported in the year 2000. For example, Germany exported 758 products with an RCA≥0.01, 

and 707 products with RCA≥0.1, a profile similar to that of other industrialized countries like the 

U.K., U.S.A and Italy. Hence lowering the RCA threshold shows that industrialized countries 

manufacture and export products in almost all of the SITC-4 categories, and that specialization 

patterns are empirically driven by the lack of diversification of less developed countries, rather 

than by the absence of more productive economies in comparatively less sophisticated sectors. 

SECTION 3: THE COUNTRY-PRODUCT NETWORK 

Fig S 2 shows a simple visualization of the country product network for the year 2000 in 

which countries are located at the center of the figure and products are grouped into root SITC-

4 categories along the edges of the image. This network consists of 129 countries, 772 products 

and 13,470 links connecting countries and products when RCAcp≥1. The large number of links in 

the network limits our ability to create a useful visualization of the entire set of connections. 
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Fig S 2 Visualization of the country product network in which all exports with an RCA>1 are shown. 
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SECTION 4: BIPARTITE NETWORK ANALYSIS 

A bipartite graph or network is a set of nodes and links in which nodes can be separated 

into two groups, or partitions, such that links only connect nodes in different partitions. While 

in principle many networks can be separated into different partitions (for example every tree is 

a bipartite graph), here we concentrate on examples that are bipartite, by definition, rather 

than as a property. One example of naturally occurring bipartite networks are publication 

networks, where nodes are researchers and papers, and links connect researchers to the 

papers they have authored. Another example is the movie-actor network in which nodes are 

actors and movies, and links connect actors to the movies in which they have starred..  

With the exception of a few studies [
1,2,3,4

], bipartite networks have mostly been 

investigated by projecting the network into one of its partitions [
5,6,7,8,9,10,11,12,13,14

], typically by 

considering nodes to be connected if they share a neighbor in the opposite partition 

[
5,6,7,8,9,10,11,12,13,14

]. For example, co-authorship networks link scientists that have co-authored 

one or more papers [
8,9,10,11

], whereas movie-actor networks connect actors that have appeared 

together in one or more movies. 

While valuable information can be obtained from these projections, there is important 

information that is left out by reducing the bipartite network into either one of its partitions, 

regardless of the sophistication of the projection method. Here we present a method to 

characterize the structure of a bipartite network by iteratively considering the properties of 

neighboring nodes.  

THE METHOD OF REFLECTIONS 

 In this section we explain in detail the method of reflections as a general technique to 

study the structure of bipartite networks. To shorten the math we adopt a different notation 

than the one used for the particular example of countries and products. Going forward, we 

indicate all variables that are related to nodes in each partition by either Latin or Greek 

characters. 
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Consider a bipartite network M described by the adjacency matrix Maα, where Maα =1 if 

node a is connected to node α and zero otherwise. 

 We define the method of reflections as the recursive set of observables  

 ��,
 � 1
��,�

� ����,
��
�

 (3)  

 ��,
 � 1
��,�

� ����,
��
�

 (4)  

for n>0,with 

 ��,� � � ��
�

 (5)  

 ��,� � � ��
�

 (6)  

 Following these definitions, the degree of nodes in the bipartite network is given by ��  

and ��  (in this notation we can drop the a and α indices when referring to the general concept 

described by the variable as the alphabet already indicates if the variables refers to one 

partition or the other –countries or products-). In the example of the main text these variables 

are the diversification (ka,0) of countries and the ubiquity (kp,0) of products. Following from (3) 

and (4), the average ubiquity of a country’s exports is given by ��  whereas the average 

diversification of a product’s exporters is given by �� . The recursive nature of the method of 

reflections allows us to characterize the structure of the bipartite network by defining N 

variables for each one of its partitions. For example, continuing the characterization of the 

country-product network into a third layer of analysis in which �� , the average κ1 of a 

country’s exports, and ��  ,the average k1 of a product’s exporter, is considered, allows us to 
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characterize countries and products through a three dimensional phase space spanned by 

�� , �� , ��  and �� , �� , �� . 

 In principle we can use the method of reflections to characterize countries and products 

by N variables. The method of reflections can be generalized by choosing different values for k0 

and κ0 and iterating over them using (3) and (4). In fact, the measure of product sophistications 

PRODY [
15

] can be seen as a special case of the method of reflections in which ka,0 is the 

GDP(PPP) of a country and Maα is a matrix of RCAs. In such a case then PRODY=ka,1. When these 

variables were constructed, however, the authors were not aware that their methods were 

combining income information with the structure of a bipartite network.  

THE VARIABLES FOR THE FIRST THREE LEVELS  

 

Table S 1 shows how we interpret the first three pairs of variables describing the 

country-product network through the method of reflections: 

Definition Working Name 
Description: 
Short summary 

Question Form 

��,� Diversification 
Number of products exported by country a. 

How many products are exported by country a? 

��,� Ubiquity 
Number of countries exporting product α. 
How many countries export product α? 

��,� ��,� 
Average ubiquity of the products exported by country a. 

How common are the products exported by country a? 

��,� ��,� 
Average diversification of the countries exporting product α. 
How diversified are the countries that export product α? 

��,� ��,� 
Average diversification of countries with an export basket  similar to country a 

How diversified are countries exporting goods similar to those of country a? 

��,� ��,� 
Average ubiquity of the products exported by countries that export product α. 

How ubiquitous are the products exported by product’s α exporters? 

Table S 1 Interpretation of the bipartite network description obtained from the method of reflections. 

 INTERPRETING HIGHER REFLECTIONS 

 As we iterate the method of reflections, it becomes increasingly harder to interpret the 

variables generated by it. We can gain insight into what higher reflection variables stand for by 

analytically solving the recursion formulas presented in (3)-(6). Analytically solving the recursion 

requires us to be able to express Nk
r

 and Nκr as a function of the initial conditions, 0k
r

and 0κr . 

Mathematically (3)-(4) we search for solutions of the form: 
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  (7)  

 To illustrate this we calculate the elements 2k
r

 as an example. According to the 

definitions of the method shown in (3)-(6) the elements of 2k
r

 can be expressed as: 

  (8)  

 Where {a}α is the set of the α neighbors of a. We can use (4) to rewrite (8) as 

  (9)  

 Which can be taken into the form (7) by permuting the sums and changing the index of 

the first summation to a sum over the second neighbors of a, and the index of the second 

summation to a sum over the neighbors of a and b. 

  (10)  

 Which satisfies the form presented in (7) with  

                          (11)  

 We can interpret ka,2 from the form presented in (10) by noticing that ka,2 is a linear 

combination of the elements of 0k
r

 with coefficients given by product of the degrees of all 

nodes lying in the path connecting nodes a and b, including node a but not node b. Hence the 

coefficients ),( 002, κr
r
kCab  can be interpreted as the probability that a random walker that 

started at a ends up at b after two steps.  

 The random walker interpretation of the method of reflections is true not only for 2k
r

but 

for any N. Fig S 3 shows an example of a three node network in which some of the coefficients 
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associated with N=4 are presented explicitly

express the properties of a node in a network as a combination of the properties of all its 

neighbors, the coefficients of the linear combination being the probability that two nodes are 

connected by a random walker after 

 The coefficients of the expansion can be interpreted as a measure of similarity between 

the nodes in the network, which is context dependent, as what matters in the expansion is the 

relative weight of these coefficients when compared

Fig S 3 Example showing how the method of reflections can be seen as an expansion of the properties of a node as a function of the 

properties of other nodes in the network with weights gi

Finally, we would like to mention that while higher order reflections do extract 

increasingly more relevant information about the productive structure of a

measured by how they are related to income and growth, it is important to mention that as N

∞ all variables will progressively converge to the 

deviations of these values to be extremely informative.
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are presented explicitly. Hence the method of reflections is a way to 

express the properties of a node in a network as a combination of the properties of all its 

neighbors, the coefficients of the linear combination being the probability that two nodes are 

alker after N steps.  

The coefficients of the expansion can be interpreted as a measure of similarity between 

which is context dependent, as what matters in the expansion is the 

relative weight of these coefficients when compared to each other.  

 

 

 

 

Example showing how the method of reflections can be seen as an expansion of the properties of a node as a function of the 

properties of other nodes in the network with weights given by the product of the inverse of the degrees of each node traversed in the path 

connecting them. 

Finally, we would like to mention that while higher order reflections do extract 

increasingly more relevant information about the productive structure of a country, as 

measured by how they are related to income and growth, it is important to mention that as N

converge to the a similar value. Surprisingly, we find the tiny 

deviations of these values to be extremely informative. 
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. Hence the method of reflections is a way to 

express the properties of a node in a network as a combination of the properties of all its 

neighbors, the coefficients of the linear combination being the probability that two nodes are 

The coefficients of the expansion can be interpreted as a measure of similarity between 

which is context dependent, as what matters in the expansion is the 

Example showing how the method of reflections can be seen as an expansion of the properties of a node as a function of the 

ven by the product of the inverse of the degrees of each node traversed in the path 

Finally, we would like to mention that while higher order reflections do extract 

country, as 

measured by how they are related to income and growth, it is important to mention that as N-> 

Surprisingly, we find the tiny 
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A SIMPLE EXAMPLE 

In this section we explain the method of reflections using a simple example in which a 

network composed of four countries and four products is considered (Fig S 4). 

 

Fig S 4 A simple network used to exemplify the method of reflections.  

In this example, the diversification of countries and the ubiquity of products is given by: 

kc1,0=4 

kc2,0=1 

kc3,0=2 

kc4,0=1 

kp1,0=1 

kp2,0=2 

kp3,0=2 

kp4,0=3 

Next, we calculate higher reflections of the method (or iterations). The first reflection 

consists of the average ubiquity of country’s products and of the average diversification of a 

product’s exporters and is given by: 

kc1,1=(1/4)(1+2+2+3)=2 

kc2,1=(1/1)(2)=2 

kc3,1=(1/2)(2+3)=2.5 

kc4,1=(1/1)(3)=3 

kp1,1=(1/1)(4)=4 

kp2,1=(1/2)(4+1)=2.5 

kp3,1=(1/2)(4+2)=3 

kp4,1=(1/3)(4+2+1)=2.33 

C3

Countries Products

C4

C1

p1

p2

p3

p4

C2
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The second reflection is given by the average first reflection values of a node’s 

neighbors. 

kc1,2=(1/4)(4+2.5+2.25+2.5)=2.9583 

kc2,2=(1/1)(2.5)=2.5 

kc3,2=(1/2)(3+2.333)=2.66 

kc4,2=(1/1)(2.333)=2.33 

kp1,2=(1/1)(2)=2 

kp2,2=(1/2)(2+2)=2 

kp3,2=(1/2)(2+2.5)=2.25 

kp4,2=(1/3)(2+2.5+3)=2.5 

We can use this example to illustrate how the method of reflections is able to 

differentiate between different countries based only on information regarding which country 

exports which product. In this example, the most diversified country is c1, which exports all four 

products while there are two countries, c2 and c4, that only export a single product. The sole 

export of c2 however, is a relatively non ubiquitous product that is exported only by c1, the 

most diversified country, while the sole export of c4 is a product that is exported by all 

countries except c2. 

As we iterate the method we find that there is important information encoded in the 

relative position of countries and products relative to one another. For example, when we look 

at the values characterizing countries after the second reflection (kc,2) we can see that country 

c1 comes up ahead, followed by country c3, c2 and c4. The method places country c2 ahead of 

c4 because by the second reflection it is already considering that country c2 produces a non 

ubiquitous product that is found only in diversified countries, probably signaling that country c2 

has a relatively good endowment of capabilities and produces a small number of products 

because of other reason, such as being of relatively small size. On the contrary, c4 produces a 

product that is ubiquitous and it is found in diversified and non diversified countries, probably 

indicating that is a simple product which is accessible to countries with relatively simple 

productive structures. Hence while both, c2 and c4 produce the same number of products, the 

method can differentiate between them and considers c2 to have a more complex productive 

structure than c4. 

While small in size this example illustrates how the method of reflections can be used to 

characterize the structure of a bipartite network and how this can be applied to help the 

understanding of the productive structure of countries and the sophistication of products.  
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SECTION 5: BIPARTITE NETWORK STRUCTURE MEASURED IN OTHER DATASETS 

In this section we present two additional kc,0-kc,1 diagrams constructed using data 

aggregated according to the Harmonized system and according to the North American Industry 

Classification System (NAICS). 

 

Fig S 5 kc,0-kc,1 diagram constructed using data containing 103 countries and 1241 products aggregated according to the Harmonized System. 

0 200 400 600
10

15

20

25

30

35

ALB

ARG

ARM

AUS

AUT

AZE

BDI

BEL

BEN

BGR
BLR

BLZ

BOL

BRA

BRB

CAN

CHE

CHL

CHN

COL

CPV

CRI

CYP

CZE

DEU

DMA

DNK

ECU

ESP

EST

FIN FRA

GBR

GEO

GMB

GRC

GTM

GUY

HKG

HND

HRV

HUN

IDN

IND

IRL

IRN

ISL

ISR

ITA

JOR

JPN

KAZ

KGZ

KNA

KOR

LCA LTU

LUX

LVAMARMDA

MDV

MEX

MKD

MLT

MNG

MSR

MUS

MWI

MYS

NCL

NER

NIC

NLD
NOR

NZL

OMN

PAN

PER

PHL
POL

PRT

PYF

QAT

ROM

RUS

SAU

SDN

SEN

SGP

SVK SVN

SWE

TGO

THA

TTO

TUN
TUR

TWN

TZA
UGA

UKR

URY

USA

VCT

VEN

ZAF

ZMB

k

q k
1

0



14 

 

 

Fig S 6 kc,0-kc,1 diagram constructed using data containing 150 countries and 318 products aggregated according to the NAICS. 

SECTION 6: RANDOMIZING A BIPARTITE NETWORK 

To decide whether the structure of a network is trivial,
*
 we need to compare it to an 

appropriate null model. The four null models we introduce in this section are an extension of 

the randomization algorithms introduced by Maslov and Sneppen [
16

] to analyze degree 

correlations in protein interaction networks. Our case differs from theirs in that we are dealing 

with a bipartite network rather than with a simple graph. 

 The idea behind the randomization procedure is that we can create a null model starting 

from the data we want to analyze by shuffling the links of the network while conserving some 

of its statistical properties. The most popular version of this randomization procedure, which 

was designed for simple graphs
†
, consists of randomizing the links in the network by permuting 

the nodes at the end of a pair of links. For example, if we consider a simple graph containing 

the links {a,b} and {c,d}, then an allowed randomization step would consist of replacing these 

two links by the pairs {a,d} and {b,c}, given that the {a,d} and {b,c} links were not already part of 

                                                                 
*
Expected from chance  

†
 Simple Graph is a network in which there is only one type of nodes, and connections are strictly binary (0 or 1). 
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the network. The randomization procedure described above conserves the number of links in 

the network as well as its degree
‡
 sequence and degree distribution. This is because the 

randomization procedure conserves the exact number of connections of each node, making it a 

good null model to compare properties of a network while controlling for the degree of nodes, 

which is the most fundamental property of a network. 

 In the case of a bipartite network, we have two separate degree sequences, one for 

each of its partitions. Here we introduce four null models to control for all possible 

combinations of degree sequences. Null Model 1 is a network with the same number of nodes 

and links as the original network, yet in Null Model 1 connections have been randomly 

assigned. Null Model 1 is the less stringent of our Null Models and represents a network with 

the same number of links as the original network, but with a random degree sequence for both 

partitions. Null Model 2 controls for the degree sequence of one partition of the network, while 

randomizing the target of those links in the other partition. Null Model 2 represents a network 

with a diversification sequence matching the one in the observed data, yet in Null Model 2 the 

products exported by a country have been randomly assigned. Null Model 2 also conserves the 

total number of links in the network. Null Model 3 is symmetric to Null Model 2 in the sense 

that it represents a network with the same ubiquity distribution as the one observed in the 

data, but where the exporters of each product have been randomly assigned. Finally, Null 

Model 4 is a model obtained by permuting links in the network such that the diversification of 

countries and the ubiquity of products are exactly the same as those observed in the empirical 

data.  

 It is important to notice that as Null Models become more stringent, the number of 

possible permutations that can be performed in the randomization procedure drops 

substantially. The possible number of permutations that can be performed in a randomization 

procedure does not only depend on the stringency of the null model, but also on the structure 

of the original network. For example, if we consider a bipartite network that can be 

represented by a triangular adjacency matrix (for simplicity assume that the number of 

                                                                 
‡
 Degree: The number of links a node has. Degree Sequence: List containing the degrees of all nodes in the 

network. 



16 

 

products is equal to the number of countries and that Mcp= 1 c<p; Mcp=0 otherwise), then there 

is not a single possible permutation that could be performed using the fourth null model. For 

such a case, Null Model 4 is equivalent to the original network.  

NULL MODEL SUMMARY 

 

Null Model Number of links kc,0 sequence     kp,0 sequence <kc,0> <kc,1> < kp,0> < kp,1> 

Null Model 1 = Mcp ≠Mcp ≠Mcp = Mcp ≠Mcp = Mcp ≠Mcp 

Null Model 2 = Mcp = Mcp ≠Mcp = Mcp ≠ Mcp = Mcp ≠ Mcp 

Null Model 3 = Mcp ≠Mcp = Mcp = Mcp ≠ Mcp =Mcp ≠ Mcp 

Null Model 4 = Mcp = Mcp = Mcp = Mcp ≠ Mcp =Mcp ≠ Mcp 

Table S 2 Summary null model behavior. <> stands for the average of a quantity. 

SECTION 7: THE KP,0-KP, 1 DIAGRAM 

We compare the kp,0-kp,1  diagram obtained from our data with the one from our four 

null models (Fig S 7), finding that the structure of the country-product network is characterized 

by a strong negative correlation between kp,0-kp,1 and a wide range of kp,1 values that cannot be 

explained by any of the four null models. This result becomes even more evident when we 

study higher order reflections of the method (see SM section 7).  Products from different 

sectors are colored according to the ten root categories in the SITC-4 classification, showing 

that while there is a correspondence between the kp,0-kp,1 diagram and the SITC-4 classification, 

there are important variations among similarly classified products. For example, this graph 

shows that natural resource-based products, such as minerals and fuels, exhibit a wide range of 

ubiquities (kp,0) at approximately constant diversification of its exporters (kp,1), meaning that 
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raw materials are on average exported by poorly diversified countries regardless of being 

relatively ubiquitous like coniferous wood (kp,0=43, kp,1=115 ), or rare as tin ore (kp,0=8, kp,1 

=109 ). On the other hand, products classified as machinery show variation in the level of 

diversification of their exporters (kp,1) at relatively low ubiquities (kp,0). Hence the kp,0-kp,1 

diagram can separate simple machines produced in less-diversified countries, such as handheld 

calculators, (kp,0 =7,kp,0 =144 ) from more complex machines produced in diversified countries 

such as motorcycles (kp,0 =5,kp,1 =270 ).  



18 

 

 

Fig S 7 Method of reflections and products characteristics. A, Schematic explanation of the kp,0−−−− kp,1 space to characterize products. B, kp,0−−−− 

kp,1 diagram for null models. C, kp,0−−−− kp,1 diagram for the empirically observed exports data. 
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SECTION 8: A THIRD REFLECTION VIEW OF THE STRUCTURE OF THE COUNTRY-PRODUCT 

NETWORK 

 

Here we continue the analysis presented in the manuscript to a third layer of analysis in 

which we show figures characterizing countries by kc,0,kc,1,kc,2 and products by kp,0,kp,1,kp,2 (Fig S 

8-Fig S 11).  

 

Fig S 8 Scatter plot for kc,0 and kc,2 for the original data in the year 2000 and the four null models. 

 

Fig S 9 Scatter plot for kc,1 and kc,2 for the original data in the year 2000 and the four null models. 
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Fig S 10 Scatter plot for κκκκ and κκκκ2222 for the original data in the year 2000 and the four null models. 

 

 

Fig S 11 Scatter plot for κκκκ1111 and κκκκ2222     for the original data in the year 2000 and the four null models. 

 

SECTION 9: NULL MODELS AND GDP 

In this section we present scatter plots between GDP per capita and the first two 

variables of the method of reflections characterizing the structure of bipartite networks created 

from our four null models (Fig S 12, Fig S 13). 
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Fig S 12 Scatter plot between GDP and bipartite network properties for countries (k=kc,0, k1=kc,1) and Null Models 1 and 2

 

Fig S 13 Scatter plot between GDP and bipartite network properties for countries (k=kc,0, k1=kc,1) and Null Models 3 and 4 
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SECTION 10: THE METHOD OF REFLECTIONS AND COUNTRY RANKINGS (YEAR 2000) 

 

Fig S 14 Relative ranking of countries based on the Method of Reflections for the year 2000 



23 

 

SECTION 11: THE METHOD OF REFLECTIONS AND POPULATION 

 Economic output is usually measured in per capita terms, as the goal of development is 

to generate and distribute wealth in the most democratic way possible. Yet there are some 

other variables in which the per capita idea does not apply as directly as it does for income. One 

example is diversification, which in our formalism is represented by kc,0. While in principle we 

might be tempted to consider the per capita level of diversification, as a good indicator of the 

diversification that can be attributed to each individual in a population, it is important to 

consider that such normalization assumes that the level of diversification grows linearly with 

the number of people. This, however, would not be a careful way of measuring the amount of 

diversification that should be attributed to each individual in a population, as the number of 

different products a group of people can make might well depend on the possible number of 

interactions, and hence go as the square of the population, or could depend on a more complex 

function that is hitherto unknown. Normalizing diversification by the number of individuals in a 

population can therefore be considered naïve, as it assumes a linear functional form as the 

correct normalization for a variable that does not necessarily depends linearly in the 

population. 

The diversification of a country kc,0, however, does depend on a country’s population 

(Table S 3 column 1). Hence, we still need a variable that would give us a measure of the level 

diversification of a country that is independent of its number of inhabitants. In Table S 3 we 

present the dependence of our first four measures of diversification (kc,0,kc,2,kc,4,kc,8) on 

population,  showing that higher order reflections of the method generate measures of 

diversification that are independent of a country’s population, and are therefore good 

indicators of the level of diversification of a country that is due to the complexity of its 

economy rather than to its population. 
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VARIABLES Log kc,0 Log kc,0 Log kc,4 Log kc,8 

     

Log Population 0.190*** 0.0168** 0.00343 0.000267 

t-test (4.812) (2.168) (1.488) (1.198) 

Constant 1.272** 4.708*** 5.004*** 5.081*** 

t-test (2.005) (37.63) (134.7) (1415) 

Observations 127 127 127 127 

Adjusted R
2
 0.150 0.029 0.010 0.003 

  

Table S 3 Correlation between population and successive generations of measures of diversification constructed from the method of 

reflections (** statistically significant at the 5% level, *** statistically significant at the 1% level). 

  

SECTION 12: SHARES OF PRODUCTS IN THE WORLD 

One critique of our methods that can be raised is that the SITC-4 classification is more 

disaggregated for goods produced by richer countries, as rich countries are the ones that 

created the classification system. A classification bias in that direction would overstate the level 

of diversification of rich countries and understate that of poor countries.  

We have shown that our results do not depend on the level of aggregation by 

considering two additional datasets aggregated according to different classification systems, 

which summarize all tradable goods using a different number of product classifications. Here 

we complement this test of the validity of our methods by looking at the share in world trade 

associated with each product in the SITC-4 classification (Fig S 15), finding that, contrary to the 

critique presented above, industrialized country products have large shares in total trade, 

indicating that they are not more narrowly classified than agricultural products and raw 

materials (except oil) when benchmarked by their share in world trade. In simpler terms, if we 

were to further disaggregate products into categories to achieve more homogenous shares in 

world trade, we would have to disaggregate cars into classes, like SUVs, sedans and compacts 

rather than melons into different types, indicating that the data behaves in the opposite way 

than what the critique suggests. 
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Fig S 15 Share in world trade for products sorted by SITC-4 code. 

Table S 4 and Table S 5 respectively show the five products with smallest, largest share in world 

trade. 

SITC-4 

Code 
Product Names 

World Market Share 

 in the year 2000 

(Total World Trade = 1) 

6553 Knitted/crocheted fabrics elastic or ruberized 3.2x10
-8

 

19 Live animals of a kind mainly used for human food 5.3x10
-8

 

6344 Wood-based panels N.E.S. 1.7x10
-7

 

3415 Coal gas, water gas, producer gas & similar gases 5.5x10
-7

 

2652 True hemp, raw or processed, not spun; tow and waste 8.0x10
-7

 

Table S 4 The five products with the smallest world share in the year 2000. 

SITC-4 

Code 
Product Names 

World Market Share 

 in the year 2000 

(Total World Trade = 1) 

7810 Passenger motor cars, for transport of pass. & good 0.0494 

3330 Petroleum oils & crude oils obt. from bitumen minerals 0.0493 

7764 Electronic microcircuits 0.0329 

7849 Other parts and accessories of motor vehicles 0.0225 

7599 
Parts and accessories suitable for calculating and data processing 

machines 
0.0214 

Table S 5 The five products with the largest world share in the year 2000 

SECTION 13: NETWORK STRUCTURE, INCOME AND GROWTH 

In this section we present regressions showing how the structure of the bipartite 

network is connected to income and economic growth.  We also compare the performance of 

our structural measures to two other measures of diversity: the Hirschaman-Herfindahl (H-H) 

index and Entropy. 
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The HH index is a measure of market concentration commonly used for antitrust 

purposes, yet it has also been used as a measure of diversification. The H-H index (H) is defined 

as: 

 �� � �������
�

 (12)  

where Scp is the share of product p in the export basket of country c. An alternative method to 

measure the diversification of a country’s export basket is to consider its entropy, which is 

defined as: 

 �� � � � ���log ����
�

� (13)  

High entropy values are characteristic of diversified export baskets, whereas low 

entropy values are associated with export baskets that are concentrated in a small number of 

products. 

We present the results of our regressions as tables (Table S 6-Table S 9). To help the 

reader understand the information contained in these tables, we have created a figure 

explaining how to read these regression tables (Fig S 16): 
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Fig S 16 How to read regression tables 

In this section we present regression tables between E, H, kc,0, kc,1, kc,4, kc,8, kc,12, kc,18 and 

income per capita adjusted by power-purchasing parity (Table S 6) and E, H, kc,0, kc,1, kc,4, kc,5, 

kc,8, kc,9, kc,18, kc,19 and economic growth for a 20 year period (Table S 7), two ten year periods 

(Table S 8) and four five year periods (Table S 9). Additionally, we present regression results for 

four five year periods with fixed country effects (Table S 10). A fixed country effect regression 

means that dummy variables were introduced to capture all the variation between countries, 

hence the quantity we look for here is the within R
2
, which is the variation in growth explained 

by the productive structure after controlling for all between-country variations. Technically 
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dummy variables are defined as 0 for all countries except one. In fixed effect regressions we 

introduce one of these variables per country considered.  

Table S 5 studies the relationship between the level of income in 2000, as measured by 

the log of GDP per capita at purchasing power parity, and different measures of productive 

structure. Columns 1 and 2 use pre-existing measures of diversification, in particular the 

entropy and the H-H index. The first can explain 37.7 percent of the variance in income per 

capita, while the second can only account for 17.6 percent, as shown by the R
2
 of the 

regression. Columns 3 to 8 use successive iterations of our method.  Diversification kc,0 explains 

34.5 percent of the variance; kc,1 explains 37.8 percent, and subsequent variables converge to 

53 percent by the 8
th

 reflection, with higher order variables adding little additional power. 

Columns 9 to 11 show a “horse race” between kc,18 and the pre-existing measures taken one at 

the time or simultaneously. It shows that kc,18 contains much more information than the others 

do, as reflected in the fact that adding them increases the R
2
 very little vis a vis column 8 but 

much more vis a vis columns 1 and 2. Table S 6 does a cross-country regression of growth 

between 1985 and 2005 and initial values of productive structure indicators. Columns 1–3 use 

the entropy indicator, the H-H index and the two combined. Columns 4–8 use successive pairs 

of k variables. Columns 9-11 present a horse race between the kc,18-kc,19 pair and the traditional 

measures of productive structure, both separately and taken together.  All regressions also 

control for the initial level of GDP per capita.  The results are similar to those of the previous 

table. The variables we introduce do a better job at predicting the pattern of future growth and 

higher reflections of the method have the largest predictive power. Interestingly, there is 

complementary information in successive measures of our variables so that both appear 

significant in the regression.  kc,18-kc,19 contain more information than the traditional measures 

and beat them in a horse race (equations 9-11).  

 

Table S 7 repeats these regressions, splitting the sample into two periods of 10 years, 

1985-95 and 1995-05, and finds similar results: pairs of k variables do a better job of explaining 

growth than do the traditional variables, and the quality of the fit increases with each iteration. 

A horse race between traditional and k variables shows that the bulk of the explanatory power 
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comes from the k variables, although the traditional variables have some residual information 

that is statistically significant, although small. Table S 8 repeats the analysis using four 5-year 

periods between 1985 and 2005 and finds similar results.  

Table S 9 presents an equivalent set of regressions but controls for average fixed 

country characteristics by including a dummy variable per country. This regression bases its 

identification only in the within-country variation in growth and finds similar but even stronger 

results. Our preferred specification – column 8 – is able to explain 33.72 percent of the within-

country variance, while adding the traditional variables only increases the explanatory power to 

35 percent. The two traditional variables on their own (column 3) explain only 21.72 percent of 

the within-country variance, indicating that the fit increases much more when adding the k 

variables to the traditional variables (contrast of columns 3 and 11) than when adding the 

traditional variables to the k variables (contrast column 8 and 11). 
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SECTION 14: ADDITIONAL RESULTS 

PRODY AND EXPY 

The variables PRODY and EXPY were introduced originally by Hausmann, Hwang and 

Rodrik [
15

] to characterize the sophistication of products and of countries’ exports starting from 

trade and income data.  PRODY and EXPY allow us to study the income of countries from a 

product-specific perspective. 

DEFINITIONS 

PRODY 

The PRODY of a product is the average income per-capita associated with that product. 

We can calculate PRODY using trade data as 

 � !"#� � � ���$� %�
�

 (14)  

Where Scp is the share of product p in the export basket of country c, Gc is the income of 

country c measured as GDP per capita adjusted for power purchasing parity and $� � ∑ '��� .  

EXPY 

The EXPY of a country is the average PRODY of its exports.  

 �(�#� � � ��� � !"#�
�

 (15)  

 We notice that PRODY and EXPY mix income and network information as these variables 

have a similar definition than the first two reflections of the method with k0=GDP per capita 

and Mcp related to the shares of products in the export baskets of countries. 
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EXPY, KC, 0, KC , 1 

 Here we complement our results on income by showing that k and k1 correlate with a 

countries’ EXPY (Fig S 17).  

 

Fig S 17 EXPY and bipartite network structure. a, Diversification (kc,0=k) versus EXPY. b, Average ubiquity of a country’s products (kc,1=k1) 

versus EXPY. 

 

Fig S 18 PRODY and bipartite network structure. A, Ubiquity (kp,0,) versus PRODY. b, Average ubiquity of a country’s products (kp,1) versus 

PRODY. 

 

NULL MODEL BEHAVIOR FOR PRODY AND EXPY, KC ,0, KC , 1  

Here we present the null model behavior for the relationships found between PRODY, 

EXPY and the network structure (Fig S 19 - Fig S 22). 
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Fig S 19 Comparison between PRODY and EXPY with kc,0, kc,1, kp,0 and kp,1 for null model 1. A PRODY v/s kp,0  B PRODY v/s kp,1  C EXPY v/s kc,0 D 

EXPY v/s , kc,1 

 

Fig S 20 Comparison between PRODY and EXPY with kc,0, kc,1, kp,0 and kp,1 for null model 2. A PRODY v/s kp,0  B PRODY v/s kp,1  C EXPY v/s kc,0 D 

EXPY v/s , kc,1 
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Fig S 21 Comparison between PRODY and EXPY with kc,0, kc,1, kp,0 and kp,1 for null model 3. A PRODY v/s kp,0  B PRODY v/s kp,1  C EXPY v/s kc,0 D 

EXPY v/s , kc,1 

 

Fig S 22 Comparison between PRODY and EXPY with kc,0, kc,1, kp,0 and kp,1 for null model 4. A PRODY v/s kp,0  B PRODY v/s kp,1  C EXPY v/s kc,0 D 

EXPY v/s , kc,1 
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BIPARTITE NETWORK ANALYSIS AND PROXIMITY IN THE PRODUCT SPACE 

 We study the relationship between the analysis presented here and the proximity 

between products in the product space by asking if products that are close in the κ−θ  diagram 

are proximate in The Product Space. 

 Proximity in the product space is defined as the minimum pair-wise conditional 

probability of co-exporting products p1  and p2. We can express this as a function of M as: 

 )�*�+ � min /∑ ��*��+�∑ ��*� 0 ∑ ��*��+�∑ ��+� 1. (16)  

 We expect pairs of products co-exported by a large fraction of countries (i.e. pairs of 

products having a large φ) to have a similar kp,0 and kp,1. We control for randomness by using 

our four null models, as these can be used to compare the relationship between kp,0 and kp,1 

and φ for networks that are similar to Mcp. The four null-models allow us to study variations in 

the relationships between kp,0, kp,1 and φ that come from the network structure, rather than 

from their definition. 

 Proximity (φ) is a quantity associated with a pair of products. We compare φ to kp,0 and 

kp,1 by measuring the Euclidean distance in the kp,0 and kp,1 space: 

 

Δ�*�+ � 4���*,� � ��+,��� 5 ���*,� � ��*,��� 

Δ�*�+ � 4Δ��,�� 5 Δ��,��. 
(17)  

We study the relationship between the distance in the kp,0-kp,1 space and φ (Fig S 23) and 

find that high proximity values are likely only among products close by in the kp,0-kp,1 diagram. 

We notice that the null models do not give rise to proximities as high as the ones observed in 

the original data, suggesting that the high observed co-production of some pairs of products 
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cannot be expected from chance, and hence, high proximity values indicate similarities 

between the productive structures required to produce such pairs of products.  

These results also show that a good φ threshold is to consider φ>0.5, as φ values above 

that threshold are extremely rare in any of the four null models. 
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Fig S 23 Bipartite network structure and product proximity. The five plots show proximity as a function of the Euclidean distance between 

products in the kp,0-kp,1  diagram.



42 

 

REFERENCES 

                                                                 
1
 PG Lind, MC González, HJ Herrmann. Cycles and clustering in bipartite networks Phys. Rev. E, 72:056127 (2005) 

2
 R Guimerà, M Sales-Pardo, LAN Amaral. Module identification in bipartite and directed networks Phys. Rev. E, 

76:036102 (2007) 
3
 S Lehmann, M Schwartz, LK Hansen. Bi-clique Communities Phys. Rev. E, 78:016108 (2008) 

4
 K-I Goh et al. The Human Disease Network, PNAS, 104:8685-8690 (2007) 

5
 W Souma, Y Fujiwara, H Aoyama Complex Networks and Economics Physica A 324:396-401 (2003) 

6
 A.-L. Barabási, R. Albert. Emergence of scaling in random networks Science 286:509–512 (1999) 

7
 Watts, D.J.; Strogatz, S.H..Collective dynamics of 'small-world' networks. Nature 393(6684): 409–10 (1998) 

8
 MEJ Newman. The structure of scientific collaboration networks PNAS, 98-404-409 (2001) 

9
 MEJ Newman. Scientific collaboration networks I Network Construction and Fundamental Results. Phys. Rev. E, 

64:016131 (2001) 
10

 MEJ Newman.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality Phys. Rev. 

E, 64:016132 (2001) 
11

 AL Barabási  et al. Evolution of the social network of scientific collaborations Physica A 311:590-614(2002) 
12

 LAN Amaral et al. Classes of small-world networks PNAS 97:11149-11152 (2000) 
13

H Jeong, Z Neda, A-L Barabasi Measuring preferential attachment in evolving networks Europhysics Letters 61: 

567-572 (2003) (2003) 
14

 P Gleiser, L Danon Community Structure in Jazz arxiv/cond-mat/0307434 (2003) 
15

 R. Hausmann, Hwang, D. Rodrik (2007) Journal of Economic Growth, 12(1):1-25 (2007) 
16

 S Maslov, K Sneppen  Specificity and stability in topology of protein networks, Science, 296:910-913 (2002) 


